Vikenmg Prodwctions

Platform

10

YK

Lo
s

Platform &

pad

%

A

ing

BP_ Mov
BP Pressure

ViKing Production
Prepared by: Joey Vanlanduyt

Unreal Engine Version 5.1.1

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

Overview

This guide walks you through the creation of an interactive Pressure Pad and Moving Platforms System in
Unreal Engine. Designed for both beginner and intermediate developers with a foundational
understanding of Blueprints, this system offers a modular, reusable solution for dynamic environmental
interactions. Whether you're building puzzles, platforming sequences, or time-sensitive challenges, this
system integrates seamlessly into a wide variety of gameplay scenarios.

The pressure pad responds to specific actor interactions, such as players or designated objects, activating
or deactivating linked moving platforms. By combining dynamic visual feedback, sound effects, and
smooth platform movement, the system ensures a polished and intuitive player experience. In addition,
the setup is fully customizable within the Unreal Engine editor, allowing level designers to easily
configure and expand the system to suit their project’s needs.

This guide emphasizes functionality, modularity, and player feedback, with detailed explanations of the
Blueprints, setup processes, and design decisions behind the system. By the end, you’ll have a versatile
tool that enhances both gameplay and level design while serving as a foundation for future expansions or
mechanics.

In this guide, you'll learn:

How to set up a pressure plate Blueprint that reacts to player or object interaction.
How to link moving platforms to the pressure plate using an array for dynamic control.
How to create smooth platform movement using timelines and lerp functions.

How to incorporate sound effects and visual feedback to enhance player interactions.
This tutorial assumes a basic understanding of Unreal Engine's Blueprints, including:

Actor placement in a level.
Using variables, arrays, and casting.
Working with timelines for animation.

Configuring details in the editor.
Key Features of This System:

1. Interactive Pressure Plate:
e Responds to overlapping actors such as the player or a designated object (e.g., a crate).
e Plays a timeline animation to simulate the plate depressing when activated.
e Updates its state dynamically (activated or deactivated) and broadcasts this change to
linked platforms.
2. Modular Moving Platforms:
e Moves between two points based on activation signals from the pressure plate.
e Uses timelines to ensure smooth, realistic movement between locations.
e Can be linked to multiple pressure plates for complex gameplay scenarios.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

3. Editor Configurability:
e Platforms to be controlled are assigned through the pressure plate's details panel, ensuring
flexibility and ease of setup.
e Parameters such as movement speed, platform paths, and feedback effects are adjustable
directly in the editor.
4. Feedback Systems:
e Visual indicators, such as platform movement and material changes, ensure players
understand the interaction's impact.
e Sound effects provide additional feedback for activation and deactivation events,
enhancing immersion.

By the end of this guide, you'll have a modular, reusable system that can be integrated into any Unreal
Engine project, offering a polished and interactive gameplay experience. Whether you’re creating puzzles,
platforming challenges, or dynamic environments, this system provides the foundation for endless
possibilities.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

Design Choices and Philosophy:

Player Feedback To ensure players intuitively understand their interactions, this system combines visual
and auditory feedback to create a clear and engaging experience. When the pressure plate is activated, it
dynamically changes its material to a distinct color, providing immediate visual confirmation that an
interaction has occurred. This feedback not only helps players associate their actions with in-game
responses but also strengthens their sense of engagement and immersion. Linked moving platforms
respond instantly upon activation, with smooth and fluid motion achieved through timelines and
interpolation (lerp) functions. This seamless transition ensures the interaction feels polished and
intentional, adding to the overall immersion of the gameplay. Optional sound effects further enhance the
experience by providing auditory cues, such as a "click" for activation or a mechanical noise as platforms
begin to move. These sound effects reinforce the mechanical nature of the interaction, guiding players
effectively even when they are not directly observing the platform movement. Together, these feedback
mechanisms create a cohesive and intuitive system that ensures players are always aware of the impact of
their actions.

Modularity: The pressure pad and moving platform system is designed with adaptability in mind,
allowing for effortless integration into a wide range of gameplay scenarios. The standalone pressure plate
blueprint (BP_PressurePad) is designed to function independently, making it reusable throughout a level
without requiring redundant setup. Each instance can be customized directly in the editor to control
specific platforms or linked objects, offering unparalleled flexibility for level designers. The system
supports linking multiple platforms to a single pressure pad through an array in the editor, enabling
intricate puzzles and sequences where a single action can affect multiple environmental elements. For
example, a designer could create a scenario where activating a pressure pad causes several platforms to
move simultaneously, forming a path to a new area or triggering a timed challenge. The moving platform
blueprint (BP_MovingPlatform) is equally modular, allowing designers to set unique start and end
positions directly in the editor. With adjustable movement speeds and customizable paths, the platforms
can be adapted for diverse applications, from straightforward platforming challenges to complex,
interconnected puzzles. This modularity ensures the system remains versatile and scalable, meeting the
needs of both simple and advanced gameplay designs.

Iterative Prototyping: The design process for the pressure pad and moving platforms system emphasizes
rapid prototyping techniques to maximize efficiency and adaptability. During the initial development
stages, block meshes are used to represent the pressure pad and platforms. This simple approach enables
rapid iteration, allowing designers to test functionality, positioning, and interactions without being
encumbered by the complexities of final art assets. By focusing on mechanics first, designers can quickly
make adjustments to platform placement, pressure pad behavior, or interaction logic without the need to
rework intricate visual details. This streamlined workflow not only saves significant time and resources
but also ensures that the core gameplay remains the priority.

Once the system’s functionality is thoroughly tested and finalized, detailed assets can be introduced to
replace the placeholder block meshes. This smooth transition allows the final product to achieve a high
level of visual polish while ensuring that the underlying mechanics remain solid and reliable. The iterative

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

nature of this process ensures a balance between functionality and aesthetics, producing a system that is
both mechanically sound and visually appealing.

Philosophy Behind These Design Choice: The design philosophy guiding this system is rooted in
clarity, usability, and adaptability. Every element of the design, from the pressure pad’s color change to
the moving platform’s smooth motion, is crafted to provide immediate and clear feedback to the player.
This focus on clarity ensures that players can easily understand the cause-and-effect relationships between
their actions and the system’s responses, reducing frustration and enhancing the overall gameplay
experience.

For designers, the system’s modular design philosophy ensures that it is not only functional but also
highly flexible. These Blueprints can be easily integrated into various levels, enabling designers to reuse
and customize them without needing to recreate functionality. This flexibility saves time, maintains
consistency across levels, and reduces the potential for errors during implementation.

The system’s adaptability also makes it a valuable asset for the broader project. The modular design and
iterative prototyping approach mean that the system can evolve to meet the needs of the game. It can be
used for simple tutorials in the early stages of the game and then scaled up for complex, multi-layered
challenges in later levels. This versatility ensures that the pressure pad and moving platforms system
remains a robust and essential tool for a wide range of gameplay scenarios, supporting the game’s growth
and development at every stage.

These design choices aim to create an intuitive, player-friendly system that is
equally rewarding for designers, offering a balance of functionality,
adaptability, and polish.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

/ _

"’(’",L T 2] /r EN SINE

%IU f nt

Productgn ‘

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% k%%

Vikenmg Prodwctions

Blueprint Logic
1. Pressure Pad Blueprint (BP_PressurePad Platform)

BP Pressurepad Platform ViKing, Productions

Event Graph

Triggered when an actor |PTEVEREFEAGTAT Checksifthe
O B
aracter Ui tisd raasiss e hough e aray
theovelapping acorie (av Saq:vz:\)‘ Iftrue, gﬂ‘ "Mﬂmm of platforms inked
eitherthe player f5) proceedsto
L = L e
i) ot for T :ﬁ Animates the movement of the e — o
il g Ep e platform is updat pressure pad's button base as it Updates the bution base's position
e o) ety e based on the pres Gepresses visually when actvated, | HELMeline animation to s
fore actvating the z pad's sate (atvated or e et Teumak o0 confirmation of the pressure pad being
pressure pad functionality ; e deactivated). pressed.

G -

Triggered when an actor
Jeaves the pressure pad's CHEsSH e
colision area. Checks i the

ping
actor s the player character updllel e pressure

departing actoris vaiid (e.g., JCI2 e 5"?';"’ Iftrie; pad's s Actve state based
player or crate) and prosedso e
onryvalumvsmgume | managing the pad's eed on the pres
nality) iy ﬁmmndrnymdpmm pad's state (actvated or D bx . Changes the material of the u[m.ﬂmm
— = il 3

deactivates the pressure pad
functonaity if o vald actor - |GrElSe o et ’ i
eactivat e pressure pad's button base to
e . s s B e | Visuallyindicateits curent state
SN (activated (green) or deactivated
red)). Enhances player feedback
through color or emissive changes.

tera he aray of
platforms inked to this pressure
is loop ensures that eac!
platform is updated based on the
pressure pad s state (acivated o [
deactivated).
—

. » e o-— >

P Callthecusomeventon,
plaornalinked o thispresure it reverse e
platformis updated based on the

pressure pad's state (activated or

deactivated).

The BP_PressurePad_Platform blueprint is a multi-functional system designed to enhance
player interaction and environmental storytelling by seamlessly integrating detection,
activation, and feedback mechanisms. It serves several critical purposes in gameplay and
level design:

The BP_PressurePad Platform blueprint is a versatile and modular tool designed to enhance gameplay by
detecting specific actor interactions, controlling linked platforms, and providing immediate feedback.
Using dynamic actor recognition through overlap events, the pressure pad identifies when particular
actors, such as the player character, NPCs, or designated interactable objects like crates, step onto or leave
the pad. The system is highly customizable, allowing designers to define which actors can interact with
the pad. This ensures precise control over gameplay mechanics by distinguishing between valid and
invalid triggers, providing clarity and intentionality in interactions. To maintain a smooth gameplay
experience, the blueprint includes state management, tracking whether the pad is "active" or "inactive" to
prevent redundant interactions. This feature is particularly beneficial for puzzles or sequences that require
timed or sequential activations.

The pressure pad also controls linked moving platforms, offering a wide range of gameplay possibilities.
Through an array system, multiple platforms can be linked to a single pressure pad in the editor. When the
pad is activated, it triggers the platforms to move along predefined paths. The blueprint supports
bidirectional platform control, enabling platforms to return to their original positions upon deactivation.
This functionality is ideal for creating intricate puzzles or multi-step gameplay challenges. Designers can
populate the platform array with any number of platforms, ensuring adaptability for scenarios ranging
from simple interactions to complex platforming sequences. The modular design allows seamless

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

integration into various levels, with easy setup and maintenance that ensures changes to one pressure pad
or platform do not affect others.

To enhance player engagement, the blueprint incorporates visual and audio feedback, making interactions
intuitive and immersive. Upon activation, the pressure pad changes its material color, providing clear
visual confirmation that the interaction was successful. This material change is customizable, allowing for
different visual styles or themes. Optional animation depresses the pad when activated, adding a tactile,
mechanical feel to the interaction. Complementing the visual elements, audio feedback includes a "click"
sound effect upon activation or deactivation, offering auditory confirmation and reinforcing the
mechanical nature of the system. Designers can replace these sounds with custom audio to align with the
game’s aesthetic, ensuring consistency across levels.

The blueprint’s modular design further supports its utility in diverse gameplay scenarios. It can be
dropped into any level and linked to existing moving platforms or other interactable elements without
requiring extensive modifications. This flexibility ensures that the pressure pad can facilitate dynamic
interactions while maintaining clean and efficient level design. Changes to one instance of the blueprint
are localized, preserving the integrity of other instances and simplifying level creation.

In gameplay, the BP_PressurePad_Platform blueprint encourages critical thinking and problem-solving,
particularly in puzzle-based levels. By linking player interactions to environmental changes, such as
opening pathways or enabling new mechanics, the blueprint adds depth to player engagement. Immediate
visual and audio feedback enhances immersion, aligning player actions with tangible in-game outcomes.
The system’s adaptability allows it to support everything from introductory tutorials to complex,
multi-stage puzzles, making it a foundational component for dynamic interactions. In summary, the
BP_PressurePad Platform blueprint combines robust functionality, intuitive feedback, and modular
design, ensuring its seamless integration into any project.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

Key Variables:

[Components
+Add Q

© BP_Pressurepad_Platform (Self)
DefaultSceneRoot

5% Base

Button_Base

« Ccolision PlatformArray: An array storing references to linked

moving platforms.

IsActive: Boolean that tracks the current state of the
M My Blueprint pressure pad (active or inactive).

+Aadd Q

ButtonBase: Represents the visual element of the pad

CRAPHS that depresses when activated.

%= EventGraph
FUNCTIONS

~*f ConstructionScript
MACROS

VARIABLES
Components

IsActive Boolean e
MovingPlatformRef BP Moving Pl >+
PlatformArray BP Moving Pl ®

EVENT DISPATCHERS @

© BP_ButtonPlatform (Self)

DefaultSceneRoot Edit in Blueprint
NOTE! & Button_Base Edit in Blueprint
Q =1 ¢
Make sure to
assign the Actor LoD Misc Phy: Streaming
deSired Transform
moving Location W
Rotation
platforms to wen
Scale
the button by .

selecting them RS

in the button's
Details panel.

Platform Array 2 Array elements

] 3 ingPlatform

1 BP_MovingPlatform2

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Logic:

Event: Actor Begin Overlap

Triggered when an actor
enters the pressure pad's
collision area. Verifies if
the overlapping actor is
either the player,
(BP_Scrapper) or a valid
movable crate
(BP_MovableCrate_Red)
before activating the

Prevents redundant
activation by checking
if the pressure padis
already active. Ensures
efficiency and prevents
overlapping logic
execution.

Checks if the
overlapping actoriisithe
player character
(BP_Scrapper). Ifitrue,
proceeds to further
interactions: This
ensures only valid
actorsitriggerthe
pressure pad

Verifiesifithe:
overlappinglactorisal
moyablelcrate

(BRIMbyableGrate_Red);

dihisensuresithepad
respondsiappropriately)
tolnteractablelobjects

Vikenmg Prodwctions

Updates the pressure.
pad’s Is Active state
based on the
triggering actor. This
is cruciallfor
managing the pad’s
functionality and
prevents unnecessary.

Iterates through the array
of platforms linked to
this pressure pad. This
loop ensures that each
platform is updated
based on the pressure
pad's state (activated or

pressure pad functionality: functionality:

suchiasicrates; deactivated).

reactivation.

& Event ActorBeginOverlap T Branch »% Cast To BP_Scrapper p ForEach Loop
P——» Tre p————— P » »

Other Actor Condition False > Object tFailed Is Active

Object Gast Failed [

le Crate Red

Platform Array

Detects if the overlapping actor is either the player (BP_Scrapper in the case of this tutorial) or a crate
(BP_MovableCrate_Red). If valid, sets IsActive to True.

Animates the movement of the
pressure pad's button base as it
depresses visually when
activated. Ensures immersive
feedback for the player.

Updates the button base’s position during
the timeline animation to provide visual
confirmation of the pressure pad/being
pressed.

Activates the Timeline TL PressurePadDepress to
visually depress the button.

F Set Relative Location
essurePadDepress
U R T ——
D Play from Start Finished Button Base Target

D stop Direction New Location X [0]

Callsithe custom event.on

Plays a 2D sound for

feedback.

Iterates through the

Statel Preventelredundant
executions by checking ifithe:
padisalieadyactivi

T

Wwhen the pressire pad is)
activatedjorideactivated|
10 Adeaudio

Changes the material of the
pressure pad's button base to
visually indicate its current state
(activated (green) or deactivated
red)). Enhances player feedback
through color or emissive changes.

7 St Wateral

Iterates through the array of
platforms linked to this pressure
pad. This loop ensures that each
platform is updated based on
the pressure pad's state
(activated or deactivated).

each)platform inthe array;
tojimitiate movement.
Platformes transition
smoothlytotheir
destination) asidefined in
theimblueprints.

oving Piaforms

PlatformArray and D IETEDEETes
Iterates through the array of each platform in the array o

triggers the pla:?rr;sl[inked lothis!;;‘retssurﬁ e e
pad. IS loop ensures that eacl movement. Ensures

ActivateMovingPlatforms
event on all linked
platforms.

platform is updated based on the

pressure pad's state (activated or
deactivated).

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

platforms respond to the
pressure pad's deactivation.

Event: Actor End Overlap

Triggered when an actor
leaves the pressure pad's
collision area. Checks if the
departing actor is valid
(e.g., player or crate) and
deactivates the pressure
pad functionality if no valid
actor remains.

& Event ActorEndOverlap

Other Actor

Iterates through the
PlatformArray and triggers the
DeactivateMovingPlatforms
event on all linked platforms.

Unreal Blueprint: Pressure Pad and Moving Platform

Checksif the overlapping
actor is the player. character.
(BP_Scrapper). If true,
proceeds to further
interactions: This ensures
only valid actors trigger'the
pressure pad functionality:

¥ Cast To BP_Scrapper

Vernifiesifithe
oVEeriappmglactorisia
moyableicrate
(BPZMoyableCratelRed)!
Jhisiensures thielpad
respondsiappropriately,
tojinteractable’objects
suchiasicrates,

Object Cast Failed b \ + Cast To BP_MovableCrate_Red
AsBP Scrapper]

Object

Playsiajsond effect

Vikenmg Prodwctions

Updates;the pressure
padisis Active'state based
on the'triggering actor;
This'is crucialifor;
managingjtheipadis
functionality/and prevents
unnecessary reactivation:

SET

—» e———uu

Is Active

Changes the material of the
pressure pad's button base to

Iterates through the
array of platforms linked
to this pressure pad.
This loop ensures that
each platform is updated
based on the pressure
pad's state (activated or
deactivated).
€ For Each Loop

Loop Body [
Array Array Element

Array Index

[MECE 3

Platform Array

Activates the Timeline in reverse to visually
reset the button.

Calls the custom|evention
eachplatforminthe array;

when'the pressurepad s

visually indicate its current state
(activated (green) or deactivated
red)). Enhances player feedback
through color or emissive changes.

Difficulty Level: 3 out of 5: %%k ¥ %

Iterates through the array of
platforms linked to this pressure
pad. This loop ensures that each
platform is updated based on
the pressure pad's state
(activated or deactivated).

Iterates through the array of
platforms linked to this pressure
pad. This loop ensures that each
platform is updated based on the
pressure pad's state (activated or
deactivated).

tojinitiate moyement:
Platforms transition
smoothlytotheir
destination; as definediin
theirblueprints

Calls the custom event on
each platform in the array to
halt or reverse their
movement. Ensures
platforms respond to the
pressure pad's deactivation.

ing Platforms

Vikenmg Prodwctions

2. Moving Platform Blueprint (BP_MovingPlatform)

n-

Hide the ghost mesh and text elements used for
visualization in the editor to clean up the runtime
appearance.
& Event BeginPlay
— D
e Target
T = New Visibility

Propagate to Children

Updates the platform’s location during
the timeline playback, using the
Controls the animation of the platform using a timeline. The Alpha output | Interpolatedivalue (Lerp) between the
determines the interpolation (Lerp) between the start and end locations | Startliocation and EndLiocation. Ensures
to smoothly move the platform. This ensures consistent and visually precise andcollision-aware movement by
appealing motion. enabling the Sweep option.

© ActivateMovingPlatforms —_— F SetWorld Location
@ TL ActivateMovingPlatforms & Targetis

Trigger this event to start moving the platform
from its current position toward the defined
end location. Sets the IsActive variable to True
to indicate the platform is in motion.

SET

—» »—— P Flay Update I 1 C

Terp (Vecton -
Is Active E SACEICEDY Platiorm Target Sweep HitResult

Retumn Value @

Direction T @ New Location

Trigger this event to stop the platform and D e (e
reverse its movement back to the starting

position. Sets the IsActive variable to False to

indicate the platform is no longer in motion.

& DeactivateMovingPlatforms

Upon completing the timeline animation,
iterates through all referenced platforms i
the arrdy to update their states. This allows
multiple platforms to respond
synchrc‘QﬁIy to the same trigger or logic

e
CFor Each Loop

The BP_MovingPlatform blueprint manages the seamless movement of platforms between
their designated start and end points, activating only when triggered. This system ensures
fluid, precise motion, enhancing gameplay mechanics by integrating dynamic
environmental changes. Its customizable design allows level designers to easily define start
and end locations directly in the editor, making it adaptable for various gameplay scenarios,
from simple transitions to intricate puzzles and challenges.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

Key Variables:

[« Components
- Add (o}

© BP_MovingPlatform (Self)
DefaultSceneRoot
Platform
% EndGhostMesh
Tt| EndPoint
R, Arrow

PlatformRefs: Stores references to the platform
instances.

StartLocation and EndLocation: Define the
movement range, set in the editor with ghost meshes.

M My Blueprint

+Add Q
GRAPHS currently InOViIlg.

% EventGraph

IsActive: Boolean indicating whether the platform is

FUNCTIONS
~*f ConstructionScript
MACROS

VARIABLES

Components

RedPadReference
MoveSpeed

IsActive

BP Pressurepac
Float

Boolean

EndLocation = Vector

StartLocation = Vector
PlatformRefs

EVENT DISPATCHERS

REMINDER!

Make sure to
assign the
desired moving
platforms to
the button by
selecting them
in the button's
Details panel.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level

BP Moving Plat

© BP_ButtonPlatform (Self)

DefaultSceneRoot

% Button_Base

Q

General Actor LoD

Transform

Default

Platform Array

0

1

Misc

Rendering

Edit in Blueprint
Edit in Blueprint

=1 ¢

Streaming

2 Array elements
gPlatform

BP_MovingPlatform2

1 3 out of 5: hk ks

Vikenmg Prodwctions

Logic:

Event: Activate Moving Platforms

Trigger this event to start moving the

platform from its current position toward the

defined end location. Sets the IsActive

varlrflble to True to indicate the platformis in Sets IsActive to True.
motion.

& ActivateMovingPlatforms

Is Active

Starts the Timeline
TL_ActivateMovingPlatforms,
which interpolates the platform’s
location from StartLocation to
EndLocation using a Lerp (linear
interpolation).

Updates the platform’s location during
the timeline playback; using the

Controls the animation of the platform using a timeline. The Alpha interpolated value (Lerp) between the
output determines the interpolation (Lerp) between the start and end Startlocation and EndLocation. Ensures
locations to smoothly move the platform. This ensures consistent and precise and collision-aware movement
visually appealing motion. by enabling the Sweep option.

— F SetWorld Location
(@© TL_ActivateMovingPlatforms Ly C

P Play Update [» D

f Lerp (Vector) -
== Platform Target Sweep Hit Result

[Play from Start Finished B - -
\ Start Location @ o Return Value @

P stop Direction ————— @ New Location

End Location @ —— @ B
D Reverse New Track 0 Sweep
~ Alpha

D Reverse from End Teleport

D setNew Time

New Time [0.0]

Upon completing the timeline animation,

iterates t/hrough all referenced platforms

in the array to update their states. This

allows multiple platforms to respond

synchronously to the same trigger or logi
G For Each Loop

P Bxec Loop Body

Ensures all linked platforms update correctly

Array

using a ForEachLoop.

Platform Refs

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

Event: Deactivate Moving Platforms

Trigger this event to stop the platform and
reverse its movement back to the starting
position. Sets the IsActive variable to False to
indicate the platform is/no/longer in motion.

& DeactivateMovingPlatforms SetS ISACUVC to FalSC.

Is Active

(© TL_ActivateMovingPlatforms i

P Play Update [
D Play from Start Finished [
. . St Direction
Plays the Timeline to stop to stop the platforms where they are B stop

[Reverse Platform Movement
[Reverse from End
[set New Time

New Time |E]

Upon completing the timeline animation,
EEE tlhrough all referenced platforms
in the array to update their states. This
allows njultiple platforms to respond
synchronously to the same trigger or logic
[CForEachtoop

> Laap oty B Iterates through all platform references to synchronize their
Array Array Element States‘

Platform Refs

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

Challenges and Solutions

Implementing the BP_PressurePad_Platform and BP_MovingPlatform systems in Unreal

Engine presented several challenges during development. Each challenge required careful

problem-solving to ensure the system was robust, modular, and intuitive for both players
and designers.

1. Platforms Moving to Unexpected Locations (e.g., 0,0,0)

Issue: Platforms would often reset to the world origin (0,0,0) when their start or end
locations were not properly set in the editor.

Solution: To ensure proper initialization of the platform's movement, logic was added to
the Construction Script to verify and set the StartLocation and EndLocation during
blueprint setup. A visual ghost mesh for the EndLocation was included, allowing
designers to easily manipulate and define the platform's path directly within the editor.
Additionally, error-checking mechanisms were implemented to display warnings if the
EndLocation was not initialized, providing clear guidance to designers and preventing
unintended behavior during gameplay.

2. Activating Multiple Platforms Simultaneously

Issue: The pressure pad initially struggled to trigger more than one platform reliably,
especially in complex puzzle setups.

Solution: To manage the activation of multiple platforms, an array system
(PlatformArray) was integrated into the pressure pad blueprint to store references to all
linked platforms. A ForEachLoop was implemented to iterate through this array,
triggering the ActivateMovingPlatforms or DeactivateMovingPlatforms events for each
referenced platform, ensuring synchronized functionality. The editor setup process was
further enhanced by allowing designers to easily populate the array directly in the Details
panel, streamlining the configuration of platforms and improving usability.

3. Platforms Continuing Movement After Deactivation

Issue: Platforms sometimes kept moving after the pressure pad was deactivated, leading
to unexpected behavior.

Solution: A boolean variable, IsActive, was introduced in the platform blueprint to track
whether the platform should currently be moving. The timeline nodes were updated to
check the IsActive state, ensuring the platform stopped immediately when deactivated.
Additionally, precise timeline reverse play was implemented to smoothly return the
platform to its original position, providing seamless and polished movement behavior.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

4. Lack of Clear Feedback for Player Interactions

Issue: Players were initially unsure if their interaction with the pressure pad had triggered
a result.

Solution: Dynamic material changes were added to the pressure pad's ButtonBase to
visually indicate its activation and deactivation states, ensuring players could easily
identify when the pad was engaged. Audio cues were incorporated for both states, with a
"click" sound signaling activation and a "reset" sound marking deactivation, enhancing
the player's sensory feedback. Additionally, a Timeline was used to animate the pressure
pad as it depresses and resets, providing a tactile and visually engaging confirmation of
the interaction.

5. Debugging Overlap Issues with Actors

Issue: The pressure pad would sometimes activate or deactivate unintentionally due to
collision overlap inconsistencies.

Solution: Collision checks were refined to cast specifically to valid actor types, such as
the player (BP_Scrapper) or designated crates (BP_MovableCrate Red), ensuring only
intended interactions triggered the pressure pad. The collision setup was further improved
to prevent activation by unintended objects, such as stray physics actors or environmental
debris, maintaining the integrity of gameplay interactions. Debugging tools like Print
String were utilized extensively during testing to identify and resolve overlap issues,
ensuring reliable and consistent functionality.

6. Iterative Design Delays Due to Final Assets

Issue: Early development stages were slowed by the lack of final assets for platforms and
pressure pads

Solution: Block meshes were used during the prototyping phase to prioritize
functionality over aesthetics, enabling rapid iteration and testing of interactions without
the constraints of final designs. This approach allowed designers to focus on refining the
mechanics and ensuring reliable functionality. Once the system was finalized, block
meshes could be seamlessly replaced with detailed assets, streamlining the development
process while maintaining high-quality results.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

7. Crate Integration and Compatibility with Pressure Pads

Issue: Ensuring crates (BP_MovableCrate Red) worked seamlessly with the pressure
pad, especially during respawn scenarios.

Solution: Logic was added to the crate blueprint to detect when it fell below a defined
kill floor, triggering a teleportation back to its designated respawn location. Compatibility
with pressure pads was ensured by casting and verifying actor types during overlap
events, guaranteeing seamless interaction. Additionally, the crate’s physics and velocity
were reset upon respawn to prevent unintended behaviors such as sliding or floating,
maintaining consistent and reliable functionality throughout gameplay.

These challenges and their solutions highlight the iterative process of refining game mechanics,
demonstrating the importance of problem-solving and testing to create polished, engaging gameplay.

General Lessons Learned

Effective debugging tools, such as Print String and visual aids like ghost meshes, proved invaluable for
identifying and resolving setup errors during development, ensuring smooth progress. Adopting a
modular design approach for Blueprints allowed for reusable and scalable systems, saving time and effort,
particularly in levels with multiple pressure pads and platforms. Incorporating visual and auditory
feedback significantly enhanced player understanding and engagement, creating more intuitive and
enjoyable interactions. Additionally, prioritizing editor usability by making setup parameters easily
configurable minimized errors and streamlined the level design process, contributing to a more efficient
and user-friendly workflow.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

Vikenmg Prodwctions

Final Result

The completed Pressure Pad and Moving Platforms System is a fully functional and modular
solution designed to create dynamic environmental interactions in Unreal Engine. Combining
robust logic, clear player feedback, and flexible design, the system enhances both gameplay and
level creation by providing a polished and adaptable framework.

This system features interactive pressure pads that react dynamically to valid actors, such as the
player or crates, stepping onto or leaving the pad. The pads offer immediate visual and auditory
feedback through dynamic material changes, smooth animations, and sound effects. These
elements not only create a more engaging experience for players but also ensure clarity and
responsiveness during gameplay. The pressure pads are fully modular and reusable, making them
a versatile tool for various levels and scenarios.

The moving platforms are designed with dynamic movement, allowing for smooth transitions
between customizable start and end locations. These positions are easily defined in the editor
using ghost meshes, which provide a clear visual aid for level designers. Configurable speeds and
states add further flexibility, enabling the platforms to adapt to diverse gameplay needs. The
synchronization between pressure pads and moving platforms, managed through an array in the
pressure pad blueprint, ensures seamless functionality and efficient setup.

The system also integrates crates effectively. These crates interact seamlessly with the pressure
pad, triggering platform activation as needed. When a crate falls below a defined kill floor, it
teleports back to a designated respawn location, with its physics and velocity reset to ensure
consistent behavior. This integration adds depth to gameplay mechanics, making the system ideal
for puzzles and interactive challenges.

Testing demonstrated the system’s reliability and versatility. Pressure pads successfully activated
and deactivated linked platforms with no delays or unintended behavior. Crates worked flawlessly
with the pressure pad, resetting properly when necessary and maintaining expected functionality.
The modular setup allows designers to customize and expand the system for various gameplay
mechanics, from intricate puzzles to platforming challenges.

In the editor, designers can easily configure pressure pads and platforms through the Details
panel, with ghost meshes simplifying level design by visualizing platform paths. Additional
functionality, such as crate respawns or linked puzzles, can be implemented effortlessly, making
the system highly adaptable for different project needs.

The final result offers a polished, engaging, and intuitive gameplay experience while maintaining
flexibility for designers. With its modular design and robust functionality, the pressure pad and
moving platforms system is a valuable addition to any Unreal Engine project, serving as a
foundation for diverse gameplay scenarios. Additional guides and assets will further expand this
system’s potential, providing even greater versatility for game developers.

Unreal Blueprint: Pressure Pad and Moving Platform Difficulty Level: 3 out of 5: k% %%

