BP Buttoned Door
Door Closed ! Door Open

Press 'E' to Interact

ViKing Production
Prepared by: Joey Vanlanduyt
Unreal Engine Version 5.1.1

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Overview

This project involves the creation of a functional button-door interaction system within Unreal Engine,
starting from the First-Person template. The system demonstrates a modular approach by separating the
door frame and door into different Blueprints, with the door being the only movable component.
Additionally, a button Blueprint interacts with the door to open or close it, providing visual and auditory
feedback to the player.

The setup utilizes block meshes for initial prototyping to lay out the environment and interactions. These
were later replaced by functional Blueprints to integrate gameplay mechanics. The project showcases key
Unreal Engine features, including timelines, collision detection, and modular Blueprint structures, and
addresses design challenges effectively. This system is modular and scalable, making it adaptable for
more complex scenarios, such as multiple buttons controlling a single door or doors requiring
simultaneous button presses for activation.

Design Choices and Philosophy:

Modularity: The door and frame were designed as separate Blueprints to allow greater flexibility
and reusability in different scenarios. For example, this allows swapping out the door Blueprint
with minimal changes if a new door design or interaction logic is required.

Player Feedback: Visual feedback was added to the button via a light component, which
switches between red and green to indicate the state of the door (closed or open). Additionally,
sound effects were implemented for both the button press and door movement to enhance
immersion and ensure feedback across multiple senses.

Iterative Development with Block Meshes: The initial layout was created using block meshes, a
key step to test gameplay functionality before investing time in detailed modeling. This iterative
approach allowed for efficient testing and refinement of the core mechanics.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Blueprint
Event Graphs

i |Eniire the it actoris the correot type (door
trace from the players e le objects, 1 st

Productions

Blueprint Logic
Door Blueprint (BP_Door_ Buttoned Door)

The Door Blueprint (BP_Door_Buttoned Door) handles all movement and state
management for the door. This Blueprint ensures that the door opens and closes smoothly
using a Timeline node to adjust its hinge's rotation over time. Additionally, it uses boolean
variables like Is Door Open and Is Door Moving to prevent overlapping interactions

Custom Event: ToggleDoor:

m Triggered when the linked button is pressed.

m Checks the current state of the door (Is Door Open boolean):
m If True: Plays the Timeline in reverse to close the door.
m If False: Plays the Timeline forward to open the door.

Timeline:

m Drives the door's rotation smoothly over time.
m The rotation is applied to the door's hinge pivot to simulate realistic movement.

State Management:

m Updates Is Door Open and Is Door Moving booleans after the animation
completes to prevent overlapping interactions.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

2. Button Blueprint (BP_Door_Buttoned_ Button)

The Button Blueprint (BP_Door_Buttoned Button) manages the interaction between the
player and the door. It uses a custom event, ActivateButton, which is triggered when the
player interacts with the button via a line trace. The button includes a Timeline node to
animate its movement when pressed, creating a realistic button press effect. Boolean
variables such as Is Button Moving ensure that the button cannot be pressed repeatedly
before completing its animation. A light component is used to provide visual feedback by
changing its color to red or green, indicating the door's current state (closed or open). The
button is linked to its specific door through a Door Reference variable, ensuring it controls
the correct door in the scene.

Interaction Logic:

m Triggered by the player's line trace when the Interact button is pressed.
m Contains a Door Reference variable to link the button to a specific door
Blueprint.

Button Movement:

m Uses a Timeline to animate the button press for visual feedback.
m Changes the button mesh’s position to simulate being pressed.

Indicator Lights:
m Updates the light color based on the door's state (linked via the Door Reference).

The use of indicator lights and synchronized sound effects enhances the player experience by
providing immediate feedback about the door's state. These design choices aim to improve
usability, ensuring the player understands the outcome of their interaction without ambiguity

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

First-Person Character Blueprint

The First-Person Character Blueprint (BP_FirstPersonCharacter) enables the player to
interact with the button using an input action mapped to IA_Interact. This Blueprint uses a
Line Trace by Channel to detect objects directly in front of the player within a certain
range. When the line trace hits a button, it triggers the ActivateButton event within the
detected Button Blueprint, initiating the interaction sequence. The line trace logic ensures
precise targeting of interactable objects.This Blueprint is essential for integrating player
actions into the button-door interaction system.

Enhanced Input Action: IA_Interact:

m Detects when the player presses the interact button.

m Executes a line trace from the camera to detect hit objects within range.

m Casts the hit object to BP_Door Buttoned Button to ensure interaction is only
possible with buttons.

m Calls the ActivateButton event on the button Blueprint.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Challenges and Solutions
Button Only Working Once

Issue: Initial logic did not properly reset the Is Button Moving variable, preventing the
button from being pressed multiple times.

Solution: Added logic to reset the Is Button Moving variable once the button animation
completes, allowing the button to be pressed again.

Door Not Opening or Closing Properly
Issue: The door would sometimes require two button presses to toggle.

Solution: Refactored the state management for Is Door Moving and Is Door Open to
ensure consistent state changes and avoid overlapping animations.

Sound Overlapping
Issue:nDoor sounds would stack and play multiple times.

Solution: Added a boolean variable (Is Door Making Noise) to ensure sounds only play
when appropriate.

Line Trace Detection
Issue: Line trace initially had difficulty detecting the button reliably.

Solution: Adjusted the line trace distance and ensured that all interactive objects were set
to the correct collision channel.

5. Delayed Light Updates

Issue: The indicator lights would not update immediately after the door’s state changed.

Solution: Used a small delay (0.3 seconds) before updating the light color to match the
door’s animation timing.

Debugging tools, such as Print String nodes and visual line trace debugging, were instrumental in

identifying and resolving issues like line trace detection, state variable mismatches, and sound stacking.

For instance, Print String was used to confirm whether the Is Button Moving variable was properly

resetting at the end of the button’s animation.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Final Implementation
o The system now works seamlessly:
The player presses a button to toggle the door’s state.
Smooth animations and sounds play in sync for both the door and button.
Indicator lights provide immediate visual feedback for the door’s state.
e This implementation demonstrates a modular and reusable design:
Doors and buttons are separate Blueprints, allowing for flexibility in level design.

Multiple buttons and doors can be placed in the level, each configured independently.

Key Learnings
o Blueprint Modularization:

Separating the door and frame into distinct Blueprints allows for easy updates and
customization.

e State Management:

Properly managing state variables (Is Door Open, Is Button Moving, etc.) is crucial to
prevent unintended behavior.

e Prototyping:

Using block meshes for initial layout simplifies iteration and testing before adding
functionality.

e Debugging Tools:

Debugging (e.g., using Print String and visualizing line traces) was essential for
identifying and resolving issues.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Specific Blueprint Information

Door Blueprint (BP_Door_ Buttoned Door)

The Door Blueprint handles the animation and state management for the door. It uses a Timeline to
smoothly animate the door's movement and ensures proper synchronization between its state variables.

Step 1: Event: ToggleDoor

Event triggered by the Check if the door is

button to toggle the currently open or. closed.

door's state (open/ Determines whether to play

close). the opening or closing
animation.

© ToggleDoor

This event is called whenever the associated button triggers an interaction.
A Branch Node checks the Is Door Open boolean:

m [f True, the Timeline is played in reverse, closing the door.
m If False, the Timeline is played forward, opening the door.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Step 2: Timeline Animation

Timeline animates the door's ; ; : T :
movement over time. The Update Sets the door's relative rotation based on the Timeline output. Adjusts

pin drives the door's relative the door's Z-axis (or other, axis as needed) for vertical or horizontal
position to create a smooth 1.0/
opening or closing effect.

B ——— F Set Relative Rotation
(@ Timeline :

SET
St ate P » > —
> Play from Start Finished pp — Is Door Moving Hinge Pivot Target Sweep Hit Result
Direction New Rotatio

Door Rotation

Set New Time

Sweep

Teleport

+ Track Length 1.00

‘» DoorRotation
Externa

The Timeline node drives the rotation of the door's hinge pivot over time.

The output of the Timeline is connected to a Set Relative Rotation Node, which adjusts the
door’s rotation along the Z-axis to simulate opening or closing.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Step 3: Sound and State Management
A Play Sound 2D Node plays the door's movement sound (e.g., creaking).

Plays door sound
effects synchronized
with the animation.

f
Jf Play Sound 2D L-=J

Update the doorlbg state to ensure proper interaction and prevent multiple overlapping
commands. '

Is Door Open Is the Door Making Noise Is Door Moving

The Is Door Moving boolean ensures that no other interactions can occur while the door is in
motion, preventing overlapping animations or sounds.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

2. Button Blueprint (BP_Door_ Buttoned Button)

The Button Blueprint manages player interaction and provides visual and audio feedback for pressing the
button.

Step 1: Custom Event: ActivateButton

Preventithelbuttonifrombeingls Set the button as
nteracted withimultipletimes’ moving, since the
Whiletheanimationordoor: button was
[ogiclis active? activated.

& ActivateButton

Triggered by the First-Person Character’s [A_Interact action.

A Branch Node ensures the button isn’t already moving by checking the Is Button Moving
boolean. If False, the interaction proceeds.

The Is Button Moving variable is set to True to prevent re-triggering during the current
interaction.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Step 2: Button Animation

Timeline controlling the
button's smooth
movement for visual Adjust the button mesh's position to show it
feedback when pressed. being pressed.
Favasoms 004

"(© Timeline

F Set Relative Location

v ButtonZMovement

A Timeline node animates the button being pressed by adjusting its Z-location with a Set
Relative Location Node.

The Finished output of the Timeline resets the Is Button Moving boolean, allowing the button to
be pressed again.

Button should be no
longer moving

——

SET

»

Is Button Moving

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Step 3: Door Reference and Interaction

Ensure the button is Toggle the door open or
connected to the closed
appropriate door actor.

& Toggle Door

»+ Cast To BP_Door_Buttoned_Door Target is Bl
» | — — =
Object Cast Failed [Target

As BP Door Buttoned Door
NOTE

P

Door Reference

The Button Blueprint contains a Door Reference variable, which links the button to its
corresponding Door Blueprint.

A Cast to BP_Door_Buttoned_Door Node validates that the linked door is correct and calls the
ToggleDoor event on the Door Blueprint.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Step 4: Indicator Lights

Change Light Color to red when the

door is Closed Ensure time for logic to

R —— Set the door as open or closed.

F SetLight Color e

E - - SET
Checkif'door;is » i o o completed p ————————————— B

already open or, Indicator Light Target " 1s Door Open

closed. ~

New Light Color Door Reference Target

SRGB

1 Branch
» Tre <

Condition Fals

| _\ | Change Light Color to green when
Target Is Door Open the door is 0pen

- " F Set Light Color
Door Reference g ©
\ Target s Ligh F Delay

SET
» SEE Completed =P

Indicator Light Target Duration [0.3] Is Door Open
New Light Color [l Door Reference Target

SRGB

The button includes a light component that changes color to reflect the door’s state:

m Red Light: Indicates the door is closed.
m Green Light: Indicates the door is open.

A Branch Node checks the door’s state via the Door Reference and updates the light color
accordingly.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

3. First-Person Character Blueprint

The First-Person Character Blueprint handles player interaction with the button through a line trace
system.

Step 1: Input Action: IA_Interact

Input-Interact

Triggered when the player

Performsiavisibility trace from the player's viewpoint to/detectiinteractable objects:
presses the Interact button.

& EnhancedinputAction IA_Intém-ct- " f Line Trace By Channel
Triggered p —mas-vmnrnroree »
" Get Player Camera Manager @ Start Out Hit
O Player Index W‘ Return Value , ®End Return Value

Trace Channel

"F Get Camera Location

Completed (>

Action Value Target Return Value @

Input Action

“F Get Player Camera Manager'

4 O playernn Retur Value

“F Get Camera Rotation J Ignore Self

Return Value @ —,

= @ In Rot Return Value @ .
o=
0 Add pin ®

When the player presses the interact key (e.g., “E”), the IA_Interact action is triggered.

A Line Trace by Channel Node performs a line trace from the player’s camera forward,
checking for interactive objects within a specified distance.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Step 2: Object Detection and Casting

Interact for Buttoned Door

Calls the button logic to
handle the interaction and

- - trigger the door
Ensure the hit actor is the comrect type (door; mechanism.

button) before triggering further, logic.

“& Activate Button

v+ Cast To BP_Door_Buttoned_Button
» | ———— =

(= Break Hit Result i ~
Object Cast Failed > Target

Hit Blocking Hit
As BP Door Buttoned Button

Initial Overlap

Hit Actor

v

The line trace checks for hits on objects.
A Cast to BP_Door_Buttoned_Button Node validates whether the hit object is a button.

If the cast is successful, the button’s ActivateButton event is called.

@ BP_Door_Buttoned_Button (Self)

Q

General oD Misc : ics Rendering

Transform

Location Brz.0 137.0

Rotation 00" 00" -80.999990 *

1.0

Default

Lastly, within the Details panel of the selected BP_Door_Buttoned_Button instance, ensure the
correct door is assigned in the Door Reference property under the Default category. This links
the button to its corresponding door, allowing the interaction to function as intended.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

Additional Design Elements
Block Mesh Layout:
Block meshes were used during the prototyping phase to layout the button, door, and frame.

These placeholders allowed for testing functionality and interaction before replacing them with
the final Blueprints.

Using block meshes for prototyping allowed rapid testing of interaction placement and
functionality before committing to detailed assets. This approach minimized wasted effort and
enabled iterative adjustments to the door and button setup without distractions from visuals.

Sound Management:

Door sounds were limited using a boolean (Is Door Making Noise) to prevent stacking or
overlapping audio during rapid interactions.

Final Result

This project showcases a robust and modular approach to implementing a button-door interaction
system in Unreal Engine. From initial block mesh prototyping to the final Blueprint
implementation, the design prioritizes usability, scalability, and player feedback. Challenges
encountered during development were resolved methodically, demonstrating a solid
understanding of Unreal Engine’s features and problem-solving skills.

This modular design can easily be expanded to support more complex scenarios. For example,
multiple buttons could control a single door for cooperative puzzles, or a single button could
control multiple doors for timed challenges. The separation of the door and button into distinct
Blueprints ensures that this system can be adapted without significant rework.

Unreal Blueprint: Button and Door Difficulty Level: 3 out of 5: %%k ¥ %

