
‭BP Buttoned Door‬

‭ViKing Production‬
‭Prepared by: Joey Vanlanduyt‬
‭Unreal Engine Version 5.1.1‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Overview‬

‭This project involves the creation of a functional button-door interaction system within Unreal Engine,‬
‭starting from the First-Person template. The system demonstrates a modular approach by separating the‬

‭door frame and door into different Blueprints, with the door being the only movable component.‬
‭Additionally, a button Blueprint interacts with the door to open or close it, providing visual and auditory‬

‭feedback to the player.‬

‭The setup utilizes block meshes for initial prototyping to lay out the environment and interactions. These‬
‭were later replaced by functional Blueprints to integrate gameplay mechanics. The project showcases key‬

‭Unreal Engine features, including timelines, collision detection, and modular Blueprint structures, and‬
‭addresses design challenges effectively. This system is modular and scalable, making it adaptable for‬

‭more complex scenarios, such as multiple buttons controlling a single door or doors requiring‬
‭simultaneous button presses for activation.‬

‭Design Choices and Philosophy:‬

‭Modularity:‬‭The door and frame were designed as separate Blueprints to allow greater flexibility‬
‭and reusability in different scenarios. For example, this allows swapping out the door Blueprint‬
‭with minimal changes if a new door design or interaction logic is required.‬

‭Player Feedback:‬‭Visual feedback was added to the button via a light component, which‬
‭switches between red and green to indicate the state of the door (closed or open). Additionally,‬
‭sound effects were implemented for both the button press and door movement to enhance‬
‭immersion and ensure feedback across multiple senses.‬

‭Iterative Development with Block Meshes:‬‭The initial layout was created using block meshes, a‬
‭key step to test gameplay functionality before investing time in detailed modeling. This iterative‬
‭approach allowed for efficient testing and refinement of the core mechanics.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Blueprint Logic‬

‭1.‬ ‭Door Blueprint (BP_Door_Buttoned_Door)‬

‭The Door Blueprint (BP_Door_Buttoned_Door) handles all movement and state‬
‭management for the door. This Blueprint ensures that the door opens and closes smoothly‬
‭using a Timeline node to adjust its hinge's rotation over time. Additionally, it uses boolean‬
‭variables like Is Door Open and Is Door Moving to prevent overlapping interactions‬

‭Custom Event: ToggleDoor‬‭:‬

‭■‬ ‭Triggered when the linked button is pressed.‬
‭■‬ ‭Checks the current state of the door (Is Door Open boolean):‬

‭■‬ ‭If True: Plays the Timeline in reverse to close the door.‬
‭■‬ ‭If False: Plays the Timeline forward to open the door.‬

‭Timeline‬‭:‬

‭■‬ ‭Drives the door's rotation smoothly over time.‬
‭■‬ ‭The rotation is applied to the door's hinge pivot to simulate realistic movement.‬

‭State Management‬‭:‬

‭■‬ ‭Updates Is Door Open and Is Door Moving booleans after the animation‬
‭completes to prevent overlapping interactions.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭2.‬ ‭Button Blueprint (BP_Door_Buttoned_Button)‬

‭The Button Blueprint (BP_Door_Buttoned_Button) manages the interaction between the‬
‭player and the door. It uses a custom event, ActivateButton, which is triggered when the‬
‭player interacts with the button via a line trace. The button includes a Timeline node to‬
‭animate its movement when pressed, creating a realistic button press effect. Boolean‬
‭variables such as Is Button Moving ensure that the button cannot be pressed repeatedly‬
‭before completing its animation. A light component is used to provide visual feedback by‬
‭changing its color to red or green, indicating the door's current state (closed or open). The‬
‭button is linked to its specific door through a Door Reference variable, ensuring it controls‬
‭the correct door in the scene.‬

‭Interaction Logic‬‭:‬

‭■‬ ‭Triggered by the player's line trace when the Interact button is pressed.‬
‭■‬ ‭Contains a Door Reference variable to link the button to a specific door‬

‭Blueprint.‬

‭Button Movement‬‭:‬

‭■‬ ‭Uses a Timeline to animate the button press for visual feedback.‬
‭■‬ ‭Changes the button mesh’s position to simulate being pressed.‬

‭Indicator Lights‬‭:‬

‭■‬ ‭Updates the light color based on the door's state (linked via the Door Reference).‬

‭The use of indicator lights and synchronized sound effects enhances the player experience by‬
‭providing immediate feedback about the door's state. These design choices aim to improve‬
‭usability, ensuring the player understands the outcome of their interaction without ambiguity‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭3.‬ ‭First-Person Character Blueprint‬

‭The First-Person Character Blueprint (BP_FirstPersonCharacter) enables the player to‬
‭interact with the button using an input action mapped to IA_Interact. This Blueprint uses a‬
‭Line Trace by Channel to detect objects directly in front of the player within a certain‬
‭range. When the line trace hits a button, it triggers the ActivateButton event within the‬
‭detected Button Blueprint, initiating the interaction sequence. The line trace logic ensures‬
‭precise targeting of interactable objects.This Blueprint is essential for integrating player‬
‭actions into the button-door interaction system.‬

‭Enhanced Input Action: IA_Interact‬‭:‬

‭■‬ ‭Detects when the player presses the interact button.‬
‭■‬ ‭Executes a line trace from the camera to detect hit objects within range.‬
‭■‬ ‭Casts the hit object to BP_Door_Buttoned_Button to ensure interaction is only‬

‭possible with buttons.‬
‭■‬ ‭Calls the ActivateButton event on the button Blueprint.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Challenges and Solutions‬

‭1.‬ ‭Button Only Working Once‬

‭Issue‬‭: Initial logic did not properly reset the Is Button Moving variable, preventing the‬
‭button from being pressed multiple times.‬

‭Solution‬‭: Added logic to reset the Is Button Moving variable once the button animation‬
‭completes, allowing the button to be pressed again.‬

‭2.‬ ‭Door Not Opening or Closing Properly‬

‭Issue‬‭: The door would sometimes require two button presses to toggle.‬

‭Solution‬‭: Refactored the state management for Is Door Moving and Is Door Open to‬
‭ensure consistent state changes and avoid overlapping animations.‬

‭3.‬ ‭Sound Overlapping‬

‭Issue‬‭:nDoor sounds would stack and play multiple times.‬

‭Solution‬‭: Added a boolean variable (Is Door Making Noise) to ensure sounds only play‬
‭when appropriate.‬

‭4.‬ ‭Line Trace Detection‬

‭Issue‬‭: Line trace initially had difficulty detecting the button reliably.‬

‭Solution‬‭: Adjusted the line trace distance and ensured that all interactive objects were set‬
‭to the correct collision channel.‬

‭5.‬ ‭Delayed Light Updates‬

‭Issue‬‭: The indicator lights would not update immediately after the door’s state changed.‬

‭Solution‬‭: Used a small delay (0.3 seconds) before updating the light color to match the‬
‭door’s animation timing.‬

‭Debugging tools, such as Print String nodes and visual line trace debugging, were instrumental in‬
‭identifying and resolving issues like line trace detection, state variable mismatches, and sound stacking.‬
‭For instance, Print String was used to confirm whether the Is Button Moving variable was properly‬
‭resetting at the end of the button’s animation.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Final Implementation‬

‭●‬ ‭The system now works seamlessly:‬

‭The player presses a button to toggle the door’s state.‬

‭Smooth animations and sounds play in sync for both the door and button.‬

‭Indicator lights provide immediate visual feedback for the door’s state.‬

‭●‬ ‭This implementation demonstrates a modular and reusable design:‬

‭Doors and buttons are separate Blueprints, allowing for flexibility in level design.‬

‭Multiple buttons and doors can be placed in the level, each configured independently.‬

‭Key Learnings‬

‭●‬ ‭Blueprint Modularization‬‭:‬

‭Separating the door and frame into distinct Blueprints allows for easy updates and‬
‭customization.‬

‭●‬ ‭State Management‬‭:‬

‭Properly managing state variables (Is Door Open, Is Button Moving, etc.) is crucial to‬
‭prevent unintended behavior.‬

‭●‬ ‭Prototyping‬‭:‬

‭Using block meshes for initial layout simplifies iteration and testing before adding‬
‭functionality.‬

‭●‬ ‭Debugging Tools‬‭:‬

‭Debugging (e.g., using Print String and visualizing line traces) was essential for‬
‭identifying and resolving issues.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Specific Blueprint Information‬

‭Door Blueprint (BP_Door_Buttoned_Door)‬

‭The Door Blueprint handles the animation and state management for the door. It uses a Timeline to‬
‭smoothly animate the door's movement and ensures proper synchronization between its state variables.‬

‭Step 1‬‭:‬‭Event: ToggleDoor‬

‭This event is called whenever the associated button triggers an interaction.‬

‭A‬‭Branch Node‬‭checks the Is Door Open boolean:‬

‭■‬ ‭If True, the Timeline is played in reverse, closing the door.‬
‭■‬ ‭If False, the Timeline is played forward, opening the door.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Step 2‬‭:‬‭Timeline Animation‬

‭The Timeline node drives the rotation of the door's hinge pivot over time.‬

‭The output of the Timeline is connected to a‬‭Set Relative Rotation Node‬‭, which adjusts the‬
‭door’s rotation along the Z-axis to simulate opening or closing.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Step 3‬‭:‬‭Sound and State Management‬

‭A‬‭Play Sound 2D Node‬‭plays the door's movement sound (e.g., creaking).‬

‭After the Timeline finishes, the Is Door Open boolean is updated to reflect the door's new state.‬

‭The Is Door Moving boolean ensures that no other interactions can occur while the door is in‬
‭motion, preventing overlapping animations or sounds.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭2. Button Blueprint (BP_Door_Buttoned_Button)‬

‭The Button Blueprint manages player interaction and provides visual and audio feedback for pressing the‬
‭button.‬

‭Step 1‬‭:‬‭Custom Event: ActivateButton‬

‭Triggered by the First-Person Character’s IA_Interact action.‬

‭A‬‭Branch Node‬‭ensures the button isn’t already moving by checking the Is Button Moving‬
‭boolean. If False, the interaction proceeds.‬

‭The Is Button Moving variable is set to True to prevent re-triggering during the current‬
‭interaction.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Step 2‬‭:‬‭Button Animation‬

‭A Timeline node animates the button being pressed by adjusting its Z-location with a‬‭Set‬
‭Relative Location Node‬‭.‬

‭The Finished output of the Timeline resets the Is Button Moving boolean, allowing the button to‬
‭be pressed again.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Step 3‬‭:‬‭Door Reference and Interaction‬

‭The Button Blueprint contains a Door Reference variable, which links the button to its‬
‭corresponding Door Blueprint.‬

‭A‬‭Cast to BP_Door_Buttoned_Door Node‬‭validates that the linked door is correct and calls the‬
‭ToggleDoor event on the Door Blueprint.‬

‭\‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Step 4‬‭:‬‭Indicator Lights‬

‭The button includes a light component that changes color to reflect the door’s state:‬

‭■‬ ‭Red Light‬‭: Indicates the door is closed.‬
‭■‬ ‭Green Light‬‭: Indicates the door is open.‬

‭A‬‭Branch Node‬‭checks the door’s state via the Door Reference and updates the light color‬
‭accordingly.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭3. First-Person Character Blueprint‬

‭The First-Person Character Blueprint handles player interaction with the button through a line trace‬
‭system.‬

‭Step 1‬‭:‬‭Input Action: IA_Interact‬

‭When the player presses the interact key (e.g., “E”), the IA_Interact action is triggered.‬

‭A‬‭Line Trace by Channel Node‬‭performs a line trace from the player’s camera forward,‬
‭checking for interactive objects within a specified distance.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Step 2‬‭:‬‭Object Detection and Casting‬

‭The line trace checks for hits on objects.‬

‭A‬‭Cast to BP_Door_Buttoned_Button Node‬‭validates whether the hit object is a button.‬

‭If the cast is successful, the button’s ActivateButton event is called.‬

‭Lastly, within the‬‭Details‬‭panel of the selected‬‭BP_Door_Buttoned_Button‬‭instance, ensure the‬
‭correct door is assigned in the‬‭Door Reference‬‭property under the‬‭Default‬‭category. This links‬
‭the button to its corresponding door, allowing the interaction to function as intended.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬



‭Additional Design Elements‬

‭Block Mesh Layout‬‭:‬

‭Block meshes were used during the prototyping phase to layout the button, door, and frame.‬

‭These placeholders allowed for testing functionality and interaction before replacing them with‬
‭the final Blueprints.‬

‭Using block meshes for prototyping allowed rapid testing of interaction placement and‬
‭functionality before committing to detailed assets. This approach minimized wasted effort and‬
‭enabled iterative adjustments to the door and button setup without distractions from visuals.‬

‭Sound Management‬‭:‬

‭Door sounds were limited using a boolean (Is Door Making Noise) to prevent stacking or‬
‭overlapping audio during rapid interactions.‬

‭Final Result‬

‭This project showcases a robust and modular approach to implementing a button-door interaction‬
‭system in Unreal Engine. From initial block mesh prototyping to the final Blueprint‬
‭implementation, the design prioritizes usability, scalability, and player feedback. Challenges‬
‭encountered during development were resolved methodically, demonstrating a solid‬
‭understanding of Unreal Engine’s features and problem-solving skills.‬

‭This modular design can easily be expanded to support more complex scenarios. For example,‬
‭multiple buttons could control a single door for cooperative puzzles, or a single button could‬
‭control multiple doors for timed challenges. The separation of the door and button into distinct‬
‭Blueprints ensures that this system can be adapted without significant rework.‬

‭Unreal Blueprint:‬‭Button and Door‬ ‭Difficulty Level:‬‭3 out of 5:‬‭★★★☆☆‬


